SBA-Margin (SIMM) & SBA-Capital (FRTB)

Common and Different Features

Slides presented by Youngsuk Lee WBS Fundamental Review of the Trading Book Conferences: Toward Practical Implementation (FRTB) London 10-12 Feb 2016

Disclaimer

The information in this document is derived from sources believed to be reliable but which have not been independently verified. RBS makes no guarantee of its accuracy and completeness and is not responsible for errors of transmission of factual or analytical data, nor is it liable for damages arising out of any person's reliance upon this information. All charts and graphs are from publicly available sources or proprietary data. The views expressed in this document should not be considered as necessarily representing the views of RBS.

Contents

- Initial Margin Requirements & SIMM
- SBA-C and SBA-M
- Similarities
 - Structure
 - Calculation
- Differences
 - Overall use case
 - Methodology
 - Data

Backgrounds: Initial & Variation Margins and SIMM

Regulatory Articles

- 1. Basel: bcbs 261. Margin requirements for non-centrally cleared derivatives
- 2. US
 - Treasury, Federal Reserve, FDIC, FCA, FHFA: 2015-28671 (final)
 - CFTC: PR7294-15 (final)
- 3. Europe: JC/CP/2014/03 (consultation paper) still waiting for the final rule!
- 4. Japan, Singapore, ...

ISDA - SIMM

https://www2.isda.org/functional-areas/wgmr-implementation/

- 1. Methodology
- 2. Crowd sourcing

Timing

- 1. Phased approach
- 2. Sep 2016 for major financial institutions systemically important firms first..

Variation Margin and Initial Margin

- Firms are already posting/receiving VMs and IMs.

Regulations on VMs and IMs

Regulations on Initial Margins

Initial Margins

- 1. Now regulated. So, we must do it.
- 2. How To?
 - <u>Standardised</u> Method approach:
 - Expensive...
 - Notional schedule-based
 - Crude treatment for netting
 - Almost 'copy/paste' of the standardised method for counterparty credit risk capitalisation
 - Initial Margin Models (IMM) approach:
 - Internal models, i.e. each bank to develop their own model
 - A set of guidelines
 - Similar to the guidelines for market risk VaRs
 - 10-day liquidity horizon, 99th percentile (upper not lower)
 - Has to be <u>approved</u> by <u>our</u> local regulator

Challenge...

Challenge with adopting any IMM

- Our bank calculates the initial margin amount using our own methodology.
 - crucial difference from regulatory capital model
- But... the counterparty might not agree with our numbers!

methodology	IM: A to B	IM: B to A
Firm A	IM(A, A to B)	IM(A, B to A)
Firm B	IM(B, A to B)	IM(B, B to A)

Red: actual call amount & Blue: expected amount

- Dispute: increase in MPR and increase in IM..
- <u>BAD SOLUTION</u>: Use each bank's internal VaR model.

ISDA SIMM

ISDA SIMM Project

- To develop an initial margin calculation model jointly by industry members (ISDA)
 - Standard model that could be widely adopted as their own initial margin model
 - Risk sensitive
 - Simple and transparent
 - Easy calculations and reconciliations
- Based on <u>SBA in FRTB</u>!
- To distinguish one from another... SBA-M & SBA-C

Regulatory Perspective

approach	Market Risk Capital (FRTB)	Initial Margin
Standardised	 non-defaults: SBA-C default charge methods residual risk add-ons 	notional based
Model-based	 ES DRC NMRF 	 SIMM (SBA-M) potentially different models for some counterparties
		Model Approval Required!

SBA: Risk-based hierarchy

SBA Calculation: Cascading

Delta & Vega

- Organise all risk factors into the bucketing structure for each risk class
- For each risk factor k, calculate the net sensitivity s_k across all trades
- Weight the net sensitivity by the risk weight RW_b (defined per bucket)

 $WS_k = RW_b \cdot s_k$

• Bucket-level charge: Calculate charges K_b and net positions S_b

$$K_{b} = \sqrt{\sum_{k} WS_{k}^{2} + \sum_{k \neq l} \rho_{kl} WS_{k} WS_{l}}$$

• **Risk class-level charge**: Aggregate across buckets

Cascading, aka nest approach

- Small-sized correlation matrices
- Easier operations
- Easy to drill-down
- Easy to reconciliation between firms (SBA-C)

Charge =
$$\sqrt{\sum_{b} K_{b}^{2} + \sum_{b \neq c} \gamma_{kl} S_{k} S_{l}}$$
 where $S_{b} = \begin{cases} \sum_{k} WS_{k} & SBA - C \\ \min(K_{b}, \max(-K_{b}, \sum_{k} WS_{k})) & SBA - M \end{cases}$

Curvature: Different formula for SBA-C and SBA-M

Common Requirements

Inputs

- Widely used sensitivities
 - PV01, FX Delta, CR01, etc
 - Vegas (IR, FX, etc)

Static data

- Credit/EQ/Commodity: bucketing
- Risk class classification

Calculation Methodology

- Index decompositions
- Both are variations of the classical Variance calculation
 - Minor differences for Delta & Vega charges
- But... noticeable differences for Curvature charge

curvature	SBA-C	SBA-M
trade level curvature	full-revaluations with stressed shocks	approximation through Vega ~ vega * implied vol / time
aggregation	$\sqrt{\sum_{b} K_b^2 + \sum_{b} \sum_{c \neq b} \gamma_{bc} S_b S_c \psi(S_b, S_c)}$	$max\left(\sum_{b,k} CVR_{b,k} + \lambda \sqrt{\sum_{b} K_{b}^{2} + \sum_{b} \sum_{c \neq b} \gamma_{bc}^{2} S_{b} S_{c}}, 0\right)$

- Firm-wide consistent sensitivities
- Common calculation library

SBA Components

	SBA-C	SBA-M
risk classes	GIRR FX CSR (non-sec) CSR (sec - non-CTP) CSR (sec - CTP) Equity Commodity	GIRR/FX CSR (qualifying) CSR (non-Q) Equity Commodity
charge types	Delta Vega Curvature (on stressed shocks)	Delta Vega Curvature (based on Vega)
aggregation	2-tier cascading Variance calculation	2-tier cascading Variance calculation

Bucket Structures

	SBA-C	SBA-M
GIRR	currency	currency
FX	currency currency pair	currency currency pair
Credit	 by credit quality/sector credit quality: IG / HY sector sovereign local government financials 	same butbased on the old FRTB bucketscrowd-sourcing for reconciliation
Equity	 by market cap/economy/sector large/small cap advance/emerging markets sector consumer goods telecommunications 	similarwith index bucketcrowd-sourcing for reconciliation
Commodity	coal, crude, electricity, freight	coal, crude, light ends, middle distillates,

Differences - Operation

	SBA-C	SBA-M
go-live	• 2019/20?	• Sep 2016
department	• risk	• FO
model approval	 not required standardised approach by regulators back-testing not required 	 required it is a model! developed jointly by industry members adopted as an internal model by firm back-testing, governance and monitoring industry-wide firm-level
model parametercalibrationsrisk weightscorrelations	passiveat the mercy of regulators	 active calibrated/revisited on regular basis jointly by industry members satisfy the regulatory guideline
reconciliation	not requiredbanks to report the capitals	 required - part of daily operation banks to agree/dispute margin amounts missing trades different pricing/classifications
frequency & timing	infrequent reportingcan be delayed	daily marginnext day
scope	trading bookslicing/dicing by desk/book	by counterparty/netting setnon-cleared OTCexcluded products

Helping Reconciliations for SIMM

Tri-Resolve

triResolve Exposure Initial Margin									Repo	rt	Supp	ort •	•									
Summary Upload Datasets																						
Home / Initial Margin / RBSPLC / DBKAG / 2015-12-04 / Pledgor																						
Initial Margin Summary, Pledgor																						
RECONCILIATION LEVEL TRADES IM EXPOSUR											POSURE			то	OLS							
MtM date	Party	Counterparty	Agreement name	Role	IM Model	Risk sild	Risk class	Sensitivity type	Qualifier	Own	СР	Own	CP	Diff	% Ci	urrency						
									1000	86	405	1 534 230	1,541,819	7,540	-0.49 US	SD	QE	a 🎢				
									1. Př	35	- 29	1.6.45:6	28,032	-595	- (2.3 - US	80	Q, E	a 🎢				
									rati	102	109	1,600.345	1,678,927	-77,185	4.22 33	sə	QE	a 🗡				
													UEN.	22	- 72	238,673	692,096	2	144.2	3D	Q 🗄	≣ 🏸
											CGCP	25	12	3.728	0,1560	1965	-8, 92, 63	ЗD	QE	# 🏸		
									TOP22	152	\$5.2	(28,860	106/202	2.660	1.8 U	sn.	QE	# 🎢				
									U\$	2	2	718,640	716,771	-0.294	-0.45 U	SD	QE	a 🏸				
									Hat	13	\$2	507,038	197,659	-6,148	-4.7% U	SE)	QE	围 🎢				
									31213	314	531	8.307(85)	12,325,150	1,704,500	-32 M U	815	QE	£ 🏸				
									WORK	<i>i</i> k <u>2</u>	963	A, \$82,880	6.018,784	-105,868	12 C 1	567	QE	a 🎢				
									PER	10	13	490,300	731,862	257.002	-40.41 18	SD	Q	Ð 🏸				
									N05.	34	- 11	72,251	77,587	234	9. a - 1.18	so	C, E	2 🗡				
									5/82		723	1,112,644	480,740	1001.068	,56.78 U	£-0	QE	£ 🏹				
									12/11/2	1973	293	2,7,83,501	1,737,082	1018,412	17.88 6	SD	Q	a 🎢				
									4254.5	3,454	3,520	24,665,384	57,075,035	-4, 112, 305	-3.51 1.7	CIP CIP	QE	a 🏸				
									1005	1,184	2.48	22,877,274	17,259,752	7,964,475	13.52 0	SD	QE	I 🗡				
								ELPI.	31	325	250,680	253,70 :	-11.089	-3.42 US	SD C3	Q, E	I 🏏					
Gl-Dan-Alth-	RESPUC	FUSIAG		Pledgos	SDMM	IR_FX	19	De6 =	(C:M	145	201	12,390,015	10,285,339	1,105,476	9.7 U	SD	Q 5	H 🏏				
									PLC:	74	54	33,397	36,733	2,468	-7.10 U	S7)	Q	H 🏸				
									RUR	-0	12	25,899	63,299	-4,203	-5.47 US	SD	CL E	F 🏹				

Differences - Methodology

	SBA-C	SBA-M
Liquidity Horizon	 varying horizons 	baseline: 10-dayscaled according to concentration risk
Diversification	 offsetting/diversification allowed within risk class / charge type 	 EU rule: allowed (to be seen) within risk class / charge type US rule: only within the same product class
Curvature	at stressed shockaggregation method	vega-basedaggregation different from SBA-C
Basis Risk	across all risk classes	only for GIRR
GIRR	 the exact set of sub-curves are not specified inflation xccy-basis 	 sub-curves: ois, 1m, 3m, 6m, 12m inflation no xccy-basis
others	 CDS vs bonds commodity maturity/grade/etc 	• none
Correlation risk	 three scenarios (L/M/H) 	a single set of correlations
currency	 bank's reporting currency 	 agreed per counterparty

Differences - Data

	SBA-C	SBA-M				
Credit & Equity bucketing	 bank's own view 	 through crowd sourcing firms to send their view to a central location receive back the industry view 				
Commodities	quite different bucket structure					
Market Data	 volatilities for all risk classes (where Vega is required) 	 only for GIRR and credit 				
Common Risk Interchange Format (CRIF)	 not available 	 plays an important role 				

Comparing SBA-C and SBA-M

Case Study with Digital Options

In-Closing

Leveraging...

- SBA-C and SBA-M have many common features/requirements
 - Almost the same kinds of sensitivities (except curvatures)
 - Similar kinds of static data (for bucketing)
 - Methodology based on variance calculation

Different as well..

- Day-to-day use cases with different objectives in mind
 - SBA-C: standardised approach for capital
 - SBA-M: internal model approach for initial margin
- The devil is in details differences in data/methodology specifications

Appendix

Capital calculation: Aggregate netted risk sensitivities across risk factors. But HOW?

SBA Risk Aggregation – Risk Weight

Risk Weig For each Represe	hted Sens h risk factor nts the 97.	itivities ⁻ k, a risk w 5% expecte	eight ed sho	<i>RW_k</i> is assig ortfall over a	gned stressed pe	riod	Risk SBA-C: SBA-M	weight Calibration regulators industry			
Net a	: Sensitivit cross trade	ies s		k	1Y	5Y		<u>W</u> eighted <u>S</u> ensitivities			
Bucket	Mat	Net		<i>RW</i> _{<i>k</i>} 150 (bps) 100 (bps)				WS _k			
	1Y	+5	+750								
Ł	5Y	-5	-500				-500				
*	1Y	+10			Multiply	•	+1500				
\$	5Y	-15						-1500			

- The individual capital charge for each position would be the risk weighted sensitivity itself (e.g. £ 1Y: 750, \$ 5Y: 1500)
- How to aggregate across all positions for the portfolio-level capital?

Risk Aggregation – Correlations

Correlation Specification	<u>£</u>	2	\$				
 Specify a correlation for each pair of risk factors 	1Y	5Y	1Y	5Y			
 • ρ_{ik}: intra-bucket correlations 					-500	+1500	-1500
 γ_{£\$}: inter-bucket correlations 	1Y +		+750	1	0.75	0.5	
	L	5Y	-500	0.75 1			
1			+1500	0.5		1	0.75
Charge Calculation	-1500	U .	.ວ	0.75	1		
Variance Calculation							
Delta Charge = $\sqrt{\sum_{k,l} \operatorname{Corr}_{k,l} \cdot W}$		Corre • SB	lation C A-C: reg A-M: ind	alibration julators lustry			

Delta Charge =
$$\sqrt{\sum_{k,l} \operatorname{Corr}_{k,l} \cdot WS_k \cdot WS_l}$$

= $\sqrt{\sum_k WS_k^2 + \sum_{k \neq l} \sum_l \operatorname{Corr}_{k,l} \cdot WS_k \cdot WS_l}$

- Nothing but.. Classic parametric VaR model
 - $k \sim N(0, RW_k^2)$
 - $corr(k, l) = Corr_{kl}$ _

Risk Aggregation via 2-Tier Cascade

Bucket Charges	Net Positions
$K_{\text{\pounds}} = \sqrt{\sum_{k} WS_{\text{\pounds},k}^{2} + \sum_{k \neq l} \rho_{kl}} \cdot WS_{\text{\pounds},k} \cdot WS_{\text{\pounds},l}$	$S_{\pm} = \sum_{k} WS_{\pm,k}$
$K_{\$} = \sqrt{\sum_{k} WS_{\$,k}^{2} + \sum_{k \neq l} \rho_{kl}} WS_{\$,k} \cdot WS_{\$,l}$	$S_{\$} = \sum_{k} WS_{\$,k}$

Step 2: Aggregate across buckets

Delta Charge =
$$\sqrt{K_{\pounds}^2 + K_{\$}^2 + 2 \cdot \gamma_{\pounds\$}} \cdot S_{\pounds} \cdot S_{\$}$$

= $\sqrt{\sum_{b} K_{b}^2 + \sum_{b \neq c} \sum_{c} \gamma_{bc}} \cdot S_{b} \cdot S_{c}} \quad b, c = \pounds, \$$

Basis Risk and Correlation Scaling Method

Procedure

- Start with refined risk factors
- Calculate weighted sensitivities at each refined risk factor

Basis Risk and Correlation Scaling Method (cont'd)

Procedure (cont'd)

- Aggregation via Variance
 - Specify correlations using main attributes
 - <u>Correlation</u> between basis risk factors: <u>scaled</u> down by

$$\begin{pmatrix} K_{\pm} \end{pmatrix}^{2} = \sum_{k} WS_{k}^{2} + \sum_{k \neq l} \rho_{kl} \cdot WS_{k} \cdot WS_{l} \\ = \sum_{m} WS_{OIS,m}^{2} + \sum_{m \neq n} c_{mn} \cdot WS_{OIS,m} \cdot WS_{OIS,n} \\ + \sum_{m} WS_{BOR,m}^{2} + \sum_{m \neq n} c_{mn} \cdot WS_{BOR,m} \cdot WS_{6M,n} \\ = \sum_{m} WS_{BOR,m}^{2} + \sum_{m \neq n} c_{mn} \cdot WS_{BOR,m} \cdot WS_{6M,n} \\ + 2 \cdot \oint \cdot \left[\sum_{m} WS_{BOR,m} \cdot WS_{OIS,m} + \sum_{m \neq n} c_{mn} \cdot WS_{BOR,m} \cdot WS_{OIS,n} \right]$$

Product- vs Risk- Based

Risk-based Calculation

- Potential interpretation of EU rule (consultation stage)
- Across all trades, calculate the margins at each risk class
 - GIRR: based on IR risks (e.g. PV01s, etc) across all trades in the netting set
 - FX: based on FX risks (e.g. FX deltas, etc) across all trades in the netting set
 - CSR (Q): based on CSR (Q) (e.g. CR01s, etc) across all trades in the netting set

- ...

• Final charge: sum across all risk classes.

Product-based Calculation

- US rule (final). No cross-product hedging/diversification benefits (more expensive)
- First, partition all trades into GIRR/FX, CSR (Q), CSR(NQ), EQ and CM product classes
- Within each product class, perform the <u>risk-based</u> calculation
 - For example, the margin for EQ product class includes the charge due to PV01s, FX deltas as well as EQ deltas
- Final change: sum across all product-class charges

Note: Likely, all US counterparties will be subject to the US rule. So, we shall apply the US rule as well!